Entry Task: How do you start these? **HW 15.4**: Find the volume enclosed by $-x^2 - y^2 + z^2 = 22$ and z = 5.

HW 15.4: Find the volume above the upper cone $z = \sqrt{x^2 + y^2}$ and below $x^2 + y^2 + z^2 = 81$

15.3 Double Integrals over Polar Regions Recall:

 θ = angle measured from positive x-axis

r = distance from origin

 $x = r \cos(\theta), y = r \sin(\theta), x^2 + y^2 = r^2$

To set up a double integral in polar we:
1. Describing the region in polar
2. Replace "x" by "r cos(θ)"
3. Replace "y" by "r sin(θ)"
4. Replace "dA" by "r dr dθ"

Step 1: Describing regions in polar.

Examples: Describe the regions

HW 15.3: One loop of r = 6cos(3θ).

HW 15.3: Region in the first quadrant between the circles $x^2 + y^2 = 16$ and $x^2 + y^2 = 4x$.

HW 15.3: Find the area of the region inside $r = 1+cos(\theta)$ and outside $r = 3cos(\theta)$.

Step 2: Set up your integral in polar.

Conceptual notes:

Cartesian

Polar

Examples:

1. Compute

$$\iint\limits_{R} \frac{\cos(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} \, dA$$

where R is the region in the first quadrant that is between $x^2 + y^2 = 49$, $x^2 + y^2 = 25$ and below y = x. 2. Set up the two double integrals below over the entire circular disc of radius *a*:

3. HW 15.3:

Find the area of one closed loop of $r = 6\cos(3\theta)$.

4. **HW 15.3**: Evaluate

$$\iint_{R} x \, dA$$

over the region in the first quadrant
between the circles $x^2 + y^2 = 16$ and
 $x^2 + y^2 = 4x$ using polar.

Moral:

Three ways to describe a region in a double integral:

"Top/Bottom":

$$\iint\limits_R f(x,y)dA = \int\limits_a^b \int\limits_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx$$

"Left/Right":

$$\iint\limits_R f(x,y)dA = \int\limits_c^d \int\limits_{h_1(y)}^{h_2(y)} f(x,y) \, dx \, dy$$

"Inside/Outside":

$$\iint_{R} f(x,y)dA = \int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$$